Polynomial Regression and Response Surface Methodology: Theoretical Non-Linearity, Tutorial and Applications for Information Systems Research
DOI:
https://doi.org/10.3127/ajis.v23i0.1966Keywords:
Quantitative analysis, Polynomial regression, Response surface methodology, Non-linearityAbstract
Information systems (IS) studies regularly assume linearity of the variables and often disregard the potential non-linear theoretical interrelationships among the variables. The application of polynomial regression and response surface methodology can observe such non-linear theoretical assumptions among variables. This methodology enables to examine the extent to which two predictor variables relate to an outcome variable simultaneously. This paper utilizes the expectation confirmation theory as an example and provides a methodological commentary that illustrates a step-wise process for conducting a polynomial regression and response surface methodology.
Downloads
Published
How to Cite
Issue
Section
License
AJIS publishes open-access articles distributed under the terms of a Creative Commons Non-Commercial and Attribution License which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and AJIS are credited. All other rights including granting permissions beyond those in the above license remain the property of the author(s).