Four Flavours of Customers: A dual-system perspective on self-service technology use

Authors

  • Tapani Rinta-Kahila
  • Esko Penttinen

DOI:

https://doi.org/10.3127/ajis.v25i0.2671

Keywords:

self-service technologies, consumer typology, dual system theories, grocery industry, field study

Abstract

Self-service technologies (SSTs) increasingly permeate retail spaces. To make their SST investments worthwhile, retailers need to turn enough customers into SST users. Previous research has uncovered the significance of habitual behaviour stemming from prior experience and situational factors from the environment on SST use. However, consumers are likely to vary regarding the extent they are driven by either habit or situational factors, suggesting that different types of consumers might exist in this regard. In this paper, we probe these consumer types in a real-life choice situation by studying the choice of selecting a checkout option (either staffed or self-checkout). We conduct a field study employing mixed qualitative methods by observing and interviewing customers checking out from retail stores. We discover four distinct customer types regarding the extent of reflexive (automatic) and reflective (deliberate) processing they use in their checkout selection: habitual traditional checkout users, habitual SCO users, situational users, and drifting users. We discuss the implications of our findings by linking the cognitive processing styles to the different stages of technology acceptance. Our main contribution lies in the development of a typology of consumers based on their selection between SST and human-delivered service.

References

Aarts, H., & Dijksterhuis, A. (2000). Habits as knowledge structures: automaticity in goal-directed behavior. Journal of Personality and Social Psychology, 78(1).

Adams, S. (2013). How to Fail at Almost Everything and Still Win Big: Kind of the Story of My Life. Portfolio.

Amorim, M., Lago, A., Moscoso, P., & Prieto, E. (2016). Assisted vs. self-checkout in retail: An empirical analysis of the impact of operational process dimensions on customer satisfaction, recommendation and reuse. Journal of Service Science Research, 8(1), 1–39. https://doi.org/10.1007/s12927-016-0001-z

Atapattu, M., Sedera, D., & Ravichandran, T. (2014). Agility in consumer retail: Sense-response alignment through the eyes of customers. Australasian Journal of Information Systems, 18(2), 111–132. https://doi.org/10.3127/ajis.v18i2.866

Beatson, A., Lee, N., & Coote, L. V. (2007). Self-service technology and the service encounter. The Service Industries Journal, 27(1), 75–89. https://doi.org/10.1080/02642060601038700

Bertacchini, F., Bilotta, E., & Pantano, P. (2017). Shopping with a robotic companion. Computers in Human Behavior, 77, 382–395. https://doi.org/10.1016/j.chb.2017.02.064

Bitner, M. J., Booms, B. H., & Tetreault, M. S. (1990). The service encounter: Diagnosing favorable and unfavorable incidents. Journal of Marketing, Vol. 54, pp. 71–82. https://doi.org/10.2307/1252074

Blut, M., Wang, C., & Schoefer, K. (2016). Factors Influencing the Acceptance of Self-Service Technologies: A Meta-Analysis. Journal of Service Research, 19(4), 396–416. https://doi.org/10.1177/1094670516662352

Bond, S. D., Bettman, J. R., & Luce, M. F. (2009). Consumer Judgment from a Dual-Systems Perspective: Recent Evidence and Emerging Issues. In Review of Marketing Research (pp. 3–37).

Brandtzæg, P. B., & Heim, J. (2011). A typology of social networking sites users. International Journal of Web Based Communities, 7(1), 28–51. https://doi.org/10.1504/IJWBC.2011.038124

Broniarczyk, S. M., & Griffin, J. G. (2014). Decision Difficulty in the Age of Consumer Empowerment. Journal of Consumer Psychology, 24(4), 608–625. https://doi.org/10.1016/j.jcps.2014.05.003

Chen, C., White, C., & Hsieh, Y. E. (2020). The role of consumer participation readiness in automated parcel station usage intentions. Journal of Retailing and Consumer Services, 54(October 2019), 102063. https://doi.org/10.1016/j.jretconser.2020.102063

Chen, Y., Yu, J., Yang, S., & Wei, J. (2018). Consumer’s intention to use self-service parcel delivery service in online retailing: An empirical study. Internet Research, 28(2), 500–519. https://doi.org/10.1108/IntR-11-2016-0334

Collier, J., Breazeale, M., & White, A. (2017). Giving back the “self” in self service: customer preferences in self-service failure recovery. Journal of Services Marketing, 31(6), 604–617. https://doi.org/10.1108/JSM-07-2016-0259

Collier, J., & Kimes, S. (2012). Only If It Is Convenient: Understanding How Convenience Influences Self-Service Technology Evaluation. Journal of Service Research, 16(1), 39–51. https://doi.org/10.1177/1094670512458454

Collier, J., Moore, R. S., Horky, A., & Moore, M. L. (2015). Why the little things matter: Exploring situational influences on customers’ self-service technology decisions. Journal of Business Research, 68(3), 703–710. https://doi.org/10.1016/j.jbusres.2014.08.001

Collier, J., Sherrell, D., Babakus, E., & Horky, A. (2014). Understanding the differences of public and private self-service technology. Journal of Services Marketing, 28(1), 60–70. https://doi.org/10.1108/JSM-04-2012-0071

Dean, D. H. (2008). Shopper age and the use of self‐service technologies. Managing Service Quality: An International Journal, 18(3), 225–238. https://doi.org/10.1108/09604520810871856

Dhar, R., & Gorlin, M. (2013). A dual-system framework to understand preference construction processes in choice. Journal of Consumer Psychology, 23(4), 528–542. https://doi.org/10.1016/j.jcps.2013.02.002

Dijksterhuis, A., Bos, M. W., Nordgren, L. F., & van Baanen, R. B. (2006). On Making the Right Choice: The Deliberation-Without-Attention Effect. Science, 311, 1005–1008. https://doi.org/10.1126/science.1121629

Djelassi, S., Diallo, M. F., & Zielke, S. (2018). How self-service technology experience evaluation affects waiting time and customer satisfaction? A moderated mediation model. Decision Support Systems, 111(August 2017), 38–47. https://doi.org/10.1016/j.dss.2018.04.004

Epstein, S. (1994). Integration of the Cognitive and the Psychodynamic Unconscious. American Psychologist, 49(8), 709–724. https://doi.org/10.1037/0003-066X.50.9.799

Epstein, S., Pacini, R., Denes-Raj, V., & Heier, H. (1996). Individual differences in intuitive–experiential and analytical–rational thinking styles. Journal of Personality and Social Psychology, 71(2), 390–405. https://doi.org/10.1037/0022-3514.71.2.390

Evanschitzky, H., Iyer, G. R., Pillai, K. G., Kenning, P., & Schütte, R. (2015). Consumer Trial, Continuous Use, and Economic Benefits of a Retail Service Innovation: The Case of the Personal Shopping Assistant. Journal of Product Innovation Management, 32(3), 459–475.

Friedrich, G., & Zanker, M. (2011). A Taxonomy for Generating Explanations in Recommender Systems. AI Magazine, 32(3), 90. https://doi.org/10.1609/aimag.v32i3.2365

Galletta, D. F., Durcikova, A., Everard, A., & Jones, B. M. (2005). Does spell-checking software need a warning label? Communications of the ACM, 48(7), 82–86. https://doi.org/10.1145/1070838.1070841

Gawronski, B. (2013). What should we expect from a dual-process theory of preference construction in choice? Journal of Consumer Psychology, 23(4), 556–560. https://doi.org/10.1016/j.jcps.2013.04.007

Gelderman, C. J., Ghijsen, P. W. T., & van Diemen, R. (2011). Choosing self-service technologies or interpersonal services-The impact of situational factors and technology-related attitudes. Journal of Retailing and Consumer Services, 18, 414–421. https://doi.org/10.1016/j.jretconser.2011.06.003

Gorlin, M., & Dhar, R. (2013). Refining the dual-process theory of preference construction: A reply to Gawronski, Martin and Sloman, Stanovich, and Wegener and Chien. Journal of Consumer Psychology, 23(4), 564–568.

Kahneman, D. (2003). Maps of Bounded Rationality: Psychology for Behavioral Economics. The American Economic Review, 93(5), 1449–1475. https://doi.org/10.1257/000282803322655392

Kahneman, D. (2011). Thinking, Fast and Slow. https://doi.org/10.1017/CBO9781107415324.004

Kurnia, S., Belts, J., & Johnston, R. (2002). Understanding the Diffusion of Efficient Consumer Response: an Australian survey study. Australasian Journal of Information Systems, 9(2), 113–122. https://doi.org/10.3127/ajis.v9i2.198

Landis, J. R., & Koch, G. G. (1977). The Measurement of Observer Agreement for Categorical Data. Biometrics, 33(1), 159–174. https://doi.org/10.2307/2529310

Laureiro-Martínez, D., & Brusoni, S. (2018). Cognitive Flexibility and Adaptive Decision-Making: Evidence from a laboratory study of expert decision-makers. Strategic Management Journal, 39(4), 1031–1058. https://doi.org/10.1002/smj.2774

Lee, H., & Lyu, J. (2016). Personal values as determinants of intentions to use self-service technology in retailing. Computers in Human Behavior, 60, 322–332. https://doi.org/10.1016/j.chb.2016.02.051

Li, H., Guo, Y., & Yu, Q. (2019). Self-control makes the difference: The psychological mechanism of dual processing model on internet addicts’ unusual behavior in intertemporal choice. Computers in Human Behavior, 101(July), 95–103. https://doi.org/10.1016/j.chb.2019.07.010

Liao, S., & Cheng, C. C. (2013). Consumer evaluation of self-service innovation failure: the effect of brand equity and attribution. The Service Industries Journal, 33(5), 467–485. https://doi.org/10.1080/02642069.2011.614339

Lieberman, M. D. (2007). Social Cognitive Neuroscience: A Review of Core Processes. Annual Review of Psychology, 58(1), 259–289. https://doi.org/10.1146/annurev.psych.58.110405.085

Lien, C. H., Hsu, M. K., Shang, J. Z., & Wang, S. W. (2019). Self-service technology adoption by air passengers: a case study of fast air travel services in Taiwan. Service Industries Journal, 0(0), 1–25. https://doi.org/10.1080/02642069.2019.1569634

Liljander, V., Gillberg, F., Gummerus, J., & van Riel, A. (2006). Technology readiness and the evaluation and adoption of self-service technologies. Journal of Retailing and Consumer Services, 13(3), 177–191. https://doi.org/10.1016/j.jretconser.2005.08.004

Limayem, M., Hirt, S. G., & Cheung, C. M. K. (2007). How Habit Limits the Predictive Power Intention: The Case of Information Systems Continuance. MIS Quarterly, 31(4), 705–737.

Louis, M. R., & Sutton, R. I. (1991). Switching Cognitive Gears: From Habits of Mind to Active Thinking. Human Relations, 44(1), 55–76.

Martin, J. W., & Sloman, S. A. (2013). Refining the dual-system theory of choice. Journal of Consumer Psychology, 23(4), 552–555. https://doi.org/10.1016/j.jcps.2013.04.006

Meuter, M. L., Bitner, M. J., Ostrom, A. L., & Brown, S. W. (2005). Choosing Among Alternative Service Delivery Modes: An Investigation of Customer Trial of Self-Service Technologies. Journal of Marketing, 69(2), 61–83. https://doi.org/10.1509/jmkg.69.2.61.60759

Meuter, M. L., Ostrom, A. L., Roundtree, R. I., & Bitner, M. J. (2000). Self-Service Technologies: Understanding Customer Satisfaction with Technology-Based Service Encounters. Journal of Marketing, 64(July), 50–64. https://doi.org/10.1509/jmkg.64.3.50.18024

Meyers-Levy, J., & Maheswaran, D. (2004). Exploring Message Framing Outcomes When Systematic, Heuristic, or Both Types of Processing Occur. Journal of Consumer Psychology, 14(1&2), 159–167. https://doi.org/10.1207/s15327663jcp1401&2_18

Nijssen, E. J., Schepers, Jeroen, J. L., & Belanche, D. (2016). Why did they do it? How customers’ self-service technology introduction attributions affect the customer-provider relationship. Journal of Service Management, 27(3), 276–298.

Ortiz de Guinea, A., & Markus, M. L. (2009). Why Break the Habit of a Lifetime? Rethinking the Roles of Intention, Habit, and Emotion in Continuing Information Technology Use. MIS Quarterly, 33(3), 433–444.

Osatuyi, B., & Turel, O. (2018). Tug of war between social self-regulation and habit: Explaining the experience of momentary social media addiction symptoms. Computers in Human Behavior, 85, 95–105. https://doi.org/10.1016/j.chb.2018.03.037

Parasuraman, A. (2000). Technology Readiness Index (TRI): A Multiple-Item Scale to Measure Readiness to Embrace New Technologies. Journal of Service Research, 2(4), 307–320. https://doi.org/10.1177/109467050024001

Parasuraman, A., & Colby, C. L. (2015). An Updated and Streamlined Technology Readiness Index: TRI 2.0. Journal of Service Research, 18(1), 59–74. https://doi.org/10.1177/10946705145

Penttinen, E., Rinta-Kahila, T., Ronkko, M., & Saarinen, T. (2014) Triggering Intention to Use to Actual Use--Empirical Evidence from Self-Service Checkout (SCO) Systems. Proceedings of the 47th Hawaii International Conference on System Sciences, 3347-3355.

Polites, G., & Karahanna, E. (2012). Shackled to the Status Quo: The Inhibiting Effects of Incumbent System Habit, Switching Costs, and Inertia on New System Acceptance. MIS Quarterly, 36(1), 21–42.

Polkinghorne, D. E. (2005). Language and meaning: Data collection in qualitative research. Journal of Counseling Psychology, Vol. 52, pp. 137–145. https://doi.org/10.1037/0022-0167.52.2.137

Rinta-Kahila, T., Penttinen, E., Kumar, A., & Janakiraman, R. (2021). Customer reactions to self-checkout discontinuance. Journal of Retailing and Consumer Services, 61, 102498. https://doi.org/10.1016/j.jretconser.2021.102498

Rogers, E. M. (2003). Diffusion of Innovations (5th edition). New York: Free Press.

Roy, S. K., Balaji, M. S., Sadeque, S., Nguyen, B., & Melewar, T. C. (2017). Constituents and consequences of smart customer experience in retailing. Technological Forecasting and Social Change, 124(2017), 257–270. https://doi.org/10.1016/j.techfore.2016.09.022

Schwartz, B. (2004). The Paradox of Choice. Harper Perennial.

Shih, C.-F., & Venkatesh, A. (2004). Beyond adoption: Development and application of a use-diffusion model. Journal of Marketing, 68(1), 59–72. https://doi.org/10.1509/jmkg.68.1.59.24029

Simon, F., & Usunier, J.-C. (2007). Cognitive, demographic, and situational determinants of service customer preference for personnel-in-contact over self-service technology. International Journal of Research in Marketing, 24(2), 163–173. https://doi.org/10.1016/j.ijresar.2006.11.004

Sloman, S. A. (1996). The Empirical Case for Two Systems of Reasoning. Psychological Bulletin, 119(1), 3–22.

Soror, A. A., Hammer, B. I., Steelman, Z. R., Davis, F. D., & Limayem, M. M. (2015). Good habits gone bad: Explaining negative consequences associated with the use of mobile phones from a dual-systems perspective. Information Systems Journal, 25(4), 403–427. https://doi.org/10.1111/isj.12065

Stanovich, K. E., & West, R. F. (2000). Individual differences in reasoning: Implications for the rationality debate? Behavioral and Brain Sciences, 23(5), 645–665. https://doi.org/10.1017/S0140525X03210116

Turel, O., & Qahri-Saremi, H. (2016). Problematic Use of Social Networking Sites: Antecedents and Consequence from a Dual-System Theory Perspective. Journal of Management Information Systems, 33(4), 1087–1116. https://doi.org/10.1080/07421222.2016.1267529

Vannucci, V., & Pantano, E. (2019). Digital or human touchpoints? Insights from consumer-facing in-store services. Information Technology and People, 33(1), 296–310. https://doi.org/10.1108/ITP-02-2018-0113

Venkatesh, V., & Morris, M. G. (2000). Why Don’t Men Ever Stop to Ask for Directions? Gender, Social Influence, and Their Role in Technology Acceptance and Usage Behavior. MIS Quarterly, 24(1), 115–139.

Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157–178.

Verplanken, B., Aarts, H., & VanKnippenberg, A. (1997). Habit, information acquisition, and the process of making travel mode choices. European Journal of Social Psychology, 27(5), 539–560. https://doi.org/10.1002/(sici)1099-0992(199709/10)27:5<539::aid-ejsp831>3.0.co;2-a

Verplanken, B., & Wood, W. (2006). Interventions to Break and Create Consumer Habits. Journal of Public Policy & Marketing, 25(1), 90–103.

Wakefield, K. L., & Blodgett, J. G. (1996). The effect of the servicescape on customers’ behavioral intentions in leisure service settings. Journal of Services Marketing, 10(6), 45–61. https://doi.org/10.1108/JSM-08-2016-0291

Wang, C., Harris, J., & Patterson, P. (2012). Customer choice of self-service technology: the roles of situational influences and past experience. Journal of Service Management, 23(1), 54–78. https://doi.org/10.1108/09564231211208970

Wang, C., Harris, J., & Patterson, P. (2013). The Roles of Habit, Self-Efficacy, and Satisfaction in Driving Continued Use of Self-Service Technologies: A Longitudinal Study. Journal of Service Research, 16(3), 400–414. https://doi.org/10.1177/1094670512473200

Wang, C., Harris, J., & Patterson, P. (2017). Modeling the habit of self-service technology usage. Australian Journal of Management, 42(3), 462–481. https://doi.org/10.1177/03128962166408 62

Weijters, B., Rangarajan, D., Falk, T., & Schillewaert, N. (2007). Determinants and Outcomes of Customers’ Use of Self-Service Technology in a Retail Setting. Journal of Service Research, 10(1), 3–21. https://doi.org/10.1177/1094670507302990

Zarantonello, L., & Schmitt, B. H. (2010). Using the brand experience scale to profile consumers and predict consumer behaviour. Journal of Brand Management, 17(7), 532–540. https://doi.org/10.1057/bm.2010.4

Zhu, Z., Nakata, C., Sivakumar, K., & Grewal, D. (2013). Fix It or Leave It? Customer Recovery from Self-service Technology Failures. Journal of Retailing, 89(1), 15–29. https://doi.org/10.1016/j.jretai.2012.10.004

Downloads

Published

2021-06-20

How to Cite

Rinta-Kahila, T., & Penttinen, E. (2021). Four Flavours of Customers: A dual-system perspective on self-service technology use . Australasian Journal of Information Systems, 25. https://doi.org/10.3127/ajis.v25i0.2671

Issue

Section

Research Articles