Issues regarding IT Consumerization: How Mixed IT Portfolios of Private and Business IT Components Cause Unreliability

Authors

  • Julia Lanzl University of Hohenheim, Branch Business & Information Systems Engineering of the Fraunhofer FIT & FIM Research Center for Information Management, Germany
  • Manfred Schoch University of Hohenheim, Branch Business & Information Systems Engineering of the Fraunhofer FIT & FIM Research Center for Information Management, Germany
  • Henner Gimpel University of Hohenheim, Branch Business & Information Systems Engineering of the Fraunhofer FIT & FIM Research Center for Information Management, Germany

DOI:

https://doi.org/10.3127/ajis.v27i0.4121

Keywords:

IT consumerization, BYOD, Technostress, Self-efficacy, Integration

Abstract

With increasing mobile work due to the COVID-19 pandemic, the usage and relevance of consumer IT for business purposes have substantially increased. In this light, an understudied area of IT consumerization, the adverse outcomes for employees using consumer IT for business purposes, is of major importance. We conduct a mixed-methods study to investigate the adverse outcomes of IT consumerization. We build on prior studies and end-user interviews to draw connections between IT consumerization and unreliability as one known technostressor. A quantitative survey of 162 full-time employees shows that IT consumerization is associated with increased unreliability. The users’ general computer self-efficacy, instead, decreases unreliability, and unreliability leads to various job-related and health-related outcomes. We show that unreliability is driven by users’ experience while trying to integrate private and business IT components for business purposes. We follow up on this observation through a qualitative analysis of open-ended survey questions to detail users’ experiences. Our findings emphasize the need to examine the negative outcomes of IT consumerization, despite its well-studied positive effects. We suggest that organizations should strive to integrate business and private IT as much as IT security constraints allow for reduced technostress.

References

Adam, M. T. P., Gimpel, H., Maedche, A., & Riedl, R [Rene] (2017). Design Blueprint for Stress-Sensitive Adaptive Enterprise Systems. Business & Information Systems Engineering, 59(4), 277–291. https://doi.org/10.1007/s12599-016-0451-3

Au, N., Ngai, E. W. T., & Cheng, T. C. E. (2008). Extending the Understanding of End User Information Systems Satisfaction Formation: An Equitable Needs Fulfillment Model Approach. Management Information Systems Quarterly, 32(1), 43–66. https://doi.org/10.2307/25148828

Ayyagari, R., Grover, V., & Purvis, R. (2011). Technostress: Technological Antecedents and Implications. Management Information Systems Quarterly, 35(4), 831–858. https://doi.org/10.2307/41409963

Baskerville, R. L. (2011). Individual Information Systems as a Research Arena. European Journal of Information Systems, 20(3), 251–254. https://doi.org/10.1057/ejis.2011.8

Baskerville, R. L., & Lee, A. S. (2013). Individual-Organizational Bindpoints: A Design Theory for Bring-Your-Own-System. PACIS 2013 Proceedings.

http://aisel.aisnet.org/pacis2013/157

Bautista, J. R., Rosenthal, S., Lin, T. T., & Theng, Y. L. (2018). Predictors and Outcomes of Nurses’ Use of Smartphones for Work Purposes. Computers in Human Behavior, 84, 360–374. https://doi.org/10.1016/j.chb.2018.03.008

Becker, J., Berger, M., Gimpel, H., Lanzl, J., & Regal, C. (2020). Considering Characteristic Profiles of Technologies at the Digital Workplace: The Influence on Technostress. ICIS 2020 Proceedings. https://aisel.aisnet.org/icis2020/is_workplace_fow/is_workplace_fow/5/

Behrens, S. (2009). Shadow Systems. Communications of the ACM, 52(2), 124–129. https://doi.org/10.1145/1461928.1461960

Berg, B. L. (2009). Qualitative Research Methods for The Social Sciences (7. ed.). Boston, MA, USA: Allyn & Bacon.

Blut, M., Chong, A. Y. L., Tsigna, Z., & Venkatesh, V. (2022). Meta-Analysis of the Unified Theory of Acceptance and Use of Technology (UTAUT): Challenging its Validity and Charting a Research Agenda in the Red Ocean. Journal of the Association for Information Systems, 23(1), 13–95. https://doi.org/10.17705/1jais.00719

Chmielewski, M., & Kucker, S. C. (2020). An MTurk Crisis? Shifts in Data Quality and the Impact on Study Results. Social Psychological and Personality Science, 11(4), 464–473. https://doi.org/10.1177/1948550619875149

Crossler, R. E., Long, J. H., Loraas, T. M., & Trinkle, B. S. (2014). Understanding Compliance with Bring Your Own Device Policies Utilizing Protection Motivation Theory: Bridging the Intention-Behavior Gap. Journal of Information Systems, 28(1), 209–226. https://doi.org/10.2308/isys-50704

Doargajudhur, M. S., & Dell, P. (2019). Impact of BYOD on Organizational Commitment: An Empirical Investigation. Information Technology & People, 32(2), 246–268. https://doi.org/10.1108/ITP-11-2017-0378

Edwards, J. R., Caplan, R. D., & Harrison, R. V. (1998). Person-Environment Fit Theory. In C. L. Cooper (Ed.), Theories of Organizational Stress (pp. 28–67). Oxford University Press. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=97e0811e4c8b9394a5d3cd049fcdfdb9a24920ab

Fischer, T., Reuter, M., & Riedl, R. (2021). The Digital Stressors Scale: Development and Validation of a New Survey Instrument to Measure Digital Stress Perceptions in the Workplace Context. Frontiers in Psychology, 12, 607598.

https://doi.org/10.3389/fpsyg.2021.607598

Galluch, P. S., Grover, V., & Thatcher, J. B. (2015). Interrupting the Workplace: Examining Stressors in an Information Technology Context. Journal of the Association for Information Systems, 16(1), 1–47. https://doi.org/10.17705/1jais.00387

Gewald, H., Wang, X., Weeger, A., Raisinghani, M. S., Grant, G., Sanchez, O., & Pittayachawan, S. (2017). Millennials’ Attitudes toward IT Consumerization in the Workplace. Communications of the ACM, 60(10), 62–69. https://doi.org/10.1145/3132745

Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM) (2nd edition). Thousand Oaks, CA, USA: Sage Publications.

Harris, J., Ives, B., & Junglas, I. (2012). IT Consumerization: When Gadgets Turn into Enterprise IT Tools. MIS Quarterly Executive, 11(3), 99-112.

Junglas, I., Goel, L., Ives, B., & Harris, J. (2019). Innovation at Work: The Relative Advantage of Using Consumer IT in the Workplace. Information Systems Journal, 29(2), 317–339. https://doi.org/10.1111/isj.12198

Kehr, F., Kowatsch, T., Wentzel, D., & Fleisch, E. (2015). Blissfully Ignorant: The Effects of General Privacy Concerns, General Institutional Trust, and Affect in the Privacy Calculus. Information Systems Journal, 25(6), 607–635. https://doi.org/10.1111/isj.12062

Köffer, S., Junglas, I., Chiperi, C., & Niehaves, B. (2014). Dual Use of Mobile IT and Work-to-Life Conflict in the Context of IT Consumerization. ICIS 2014 Proceedings. https://aisel.aisnet.org/icis2014/proceedings/SocietalImpacts/7

Köffer, S., Ortbach, K., Junglas, I., Niehaves, B., & Harris, J. (2015). Innovation Through BYOD? Business & Information Systems Engineering, 57(6), 363–375.

https://doi.org/10.1007/s12599-015-0387-z

Lazarus, R. S., & Folkman, S. (1984). Stress, Appraisal, and Coping. New York, USA: Springer.

Lee, A. S., Thomas, M., & Baskerville, R. L. (2015). Going Back to Basics in Design Science: From the Information Technology Artifact to the Information Systems Artifact. Information Systems Journal, 25(1), 5–21. https://doi.org/10.1111/isj.12054

Lee, J., Warkentin, M., Crossler, R. E., & Otondo, R. F. (2017). Implications of Monitoring Mechanisms on Bring Your Own Device Adoption. Journal of Computer Information Systems, 57(4), 309–318. https://doi.org/10.1080/08874417.2016.1184032

Maier, C., Laumer, S., Weinert, C., & Weitzel, T. (2015). The Effects of Technostress and Switching Stress on Discontinued Use of Social Networking Services: A Study of Facebook Use. Information Systems Journal, 25(3), 275–308.

https://doi.org/10.1111/isj.12068

Marakas, G. M., Johnson, R. D., & Clay, P. F. (2007). The Evolving Nature of the Computer Self-Efficacy Construct: An Empirical Investigation of Measurement Construction, Validity, Reliability and Stability Over Time. Journal of the Association for Information Systems, 8(1), 16–46.

Marakas, G. M., Yi, M. Y., & Johnson, R. D. (1998). The Multilevel and Multifaceted Character of Computer Self-Efficacy: Toward Clarification of the Construct and an Integrative Framework for Research. Information Systems Research, 9(2), 126–163.

https://doi.org/10.1287/isre.9.2.126

Niehaves, B., Köffer, S., & Ortbach, K. (2012). IT Consumerization: A Theory and Practice Review. AMCIS 2012 Proceedings.

https://aisel.aisnet.org/amcis2012/proceedings/EndUserIS/18

Niehaves, B., Köffer, S., & Ortbach, K. (2013). The Effect of Private IT Use on Work Performance: Towards an IT Consumerization Theory. Wirtschaftsinformatik 2013 Proceedings. https://aisel.aisnet.org/wi2013/3

Niehaves, B., Köffer, S., Ortbach, K., & Reimler, S. (2013). Boon and Bane of IT Consumerization: The Burnout-Engagement-Continuum. AMCIS 2013 Proceedings. https://aisel.aisnet.org/amcis2013/EndUserIS/GeneralPresentations/11

Oppenheimer, D. M., Meyvis, T., & Davidenko, N. (2009). Instructional Manipulation Checks: Detecting Satisficing to Increase Statistical Power. Journal of Experimental Social Psychology, 45(4), 867–872. https://doi.org/10.1016/j.jesp.2009.03.009

Ortbach, K. (2015). Unraveling the Effect of Personal Innovativeness on Bring-Your-Own-Device (BYOD) Intention: The Role of Perceptions Towards Enterprise-Provided and Privately-Owned Technologies. ECIS 2015 Proceedings.

https://aisel.aisnet.org/ecis2015_cr/141/

Ortbach, K., Köffer, S., Bode, M., & Niehaves, B. (2013). Individualization of Information Systems: Analyzing Antecedents of IT Consumerization Behavior. ICIS 2013 Proceedings. https://aisel.aisnet.org/icis2013/proceedings/HumanBehavior/25

Ortbach, K., Köffer, S., Müller, C. P. F., & Niehaves, B. (2013). How IT Consumerization Affects the Stress Level at Work: A Public Sector Case Study. PACIS 2013 Proceedings. https://aisel.aisnet.org/pacis2013/231

Paolacci, G., Chandler, J., & Ipeirotis, P. G. (2010). Running Experiments on Amazon Mechanical Turk. Judgement and Decision Making, 5(5), 411–419.

Ragu-Nathan, T. S., Tarafdar, M., Ragu-Nathan, B. S., & Tu, Q. (2008). The Consequences of Technostress for End Users in Organizations: Conceptual Development and Empirical Validation. Information Systems Research, 19(4), 417–433.

https://doi.org/10.1287/isre.1070.0165

Rai, A., & Tang, X. (2010). Leveraging IT Capabilities and Competitive Process Capabilities for the Management of Interorganizational Relationship Portfolios. Information Systems Research, 21(3), 516–542. https://doi.org/10.1287/isre.1100.0299

Riedl, R., Kindermann, H., Auinger, A., & Javor, A. (2012). Technostress from a Neurobiological Perspective. Business & Information Systems Engineering, 4(2), 61–69. https://doi.org/10.1007/s12599-012-0207-7

Ringle, C. M., Wende, S., & Becker, J.‑M. (2022). SmartPLS 4 [Computer software]. Oststeinbek.

Salo, M., Makkonen, M., & Hekkala, R. (2020). The Interplay of IT Users’ Coping Strategies: Uncovering Momentary Emotional Load, Routes, and Sequences. Management Information Systems Quarterly, 44(3), 1143–1175.

https://doi.org/10.25300/MISQ/2020/15610

Salo, M., Pirkkalainen, H., Makkonen, M., & Hekkala, R. (2018). Distress, Eustress, or No Stress? Explaining Smartphone Users’ Different Technostress Responses. ICIS 2018 Proceedings. https://aisel.aisnet.org/icis2018/behavior/Presentations/13

Shmueli, G., Sarstedt, M., Hair, J. F., Cheah, J.‑H., Ting, H., Vaithilingam, S., & Ringle, C. M. (2019). Predictive Model Assessment in PLS-SEM: Guidelines for Using PLSpredict. European Journal of Marketing, 53(11), 2322–2347. https://doi.org/10.1108/EJM-02-2019-0189

Shu, Q., Tu, Q., & Wang, K. (2011). The Impact of Computer Self-Efficacy and Technology Dependence on Computer-Related Technostress: A Social Cognitive Theory Perspective. International Journal of Human–Computer Interaction, 27(10), 923–939. https://doi.org/10.1080/10447318.2011.555313

Silic, M., & Back, A. (2014). Shadow IT: A View from Behind the Curtain. Computers & Security, 45, 274–283.

Steelman, Z. R., Hammer, B. I., & Limayem, M. M. (2014). Data Collection in the Digital Age: Innovative Alternatives to Student Samples. Management Information Systems Quarterly, 38(2), 355–378. https://doi.org/10.25300/MISQ/2014/38.2.02

Stich, J.‑F., Tarafdar, M., Stacey, P., & Cooper, C. L. (2019). Appraisal of Email Use as A Source of Workplace Stress: A Person-Environment Fit Approach. Journal of the Association for Information Systems, 20(2), 132–160. https://doi.org/10.17705/1jais.00531

Strauss, A. L., & Corbin, J. M. (1990). Basics of Qualitative Research: Grounded Theory Procedures and Techniques. Thousand Oaks, CA, USA: Sage Publications.

Tams, S., Thatcher, J. B., & Grover, V. (2018). Concentration, Competence, Confidence, and Capture: An Experimental Study of Age, Interruption-based Technostress, and Task Performance. Journal of the Association for Information Systems, 19, 857–908. https://doi.org/10.17705/1jais.00511

Tarafdar, M., Cooper, C. L., & Stich, J.‑F. (2019). The Technostress Trifecta: Techno Eustress, Techno Distress and Design: Theoretical Directions and an Agenda for Research. Information Systems Journal, 29(1), 6–42. https://doi.org/10.1111/isj.12169

Tarafdar, M., Pullins, E. B., & Ragu-Nathan, T. S. (2015). Technostress: Negative Effect on Performance and Possible Mitigations. Information Systems Journal, 25(2), 103–132. https://doi.org/10.1111/isj.12042

Tarafdar, M., Tu, Q., & Ragu-Nathan, T. S. (2010). Impact of Technostress on End-User Satisfaction and Performance. Journal of Management Information Systems, 27(3), 303–334. https://doi.org/10.2753/MIS0742-1222270311

Venkatesh, V., Brown, S. A., & Bala, H. (2013). Bridging the Qualitative-Quantitative Divide: Guidelines for Conducting Mixed Methods Research in Information Systems. Management Information Systems Quarterly, 37(1), 21–54.

Venkatesh, V., Brown, S. A., & Sullivan, Y. W. (2016). Guidelines for Conducting Mixed-methods Research: An Extension and lllustration. Journal of the Association for Information Systems, 17(7), 435–494.

Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. Management Information Systems Quarterly, 36(1), 157–178.

Weeger, A., Wang, X., & Gewald, H. (2016). IT Consumerization: Byod-Program Acceptance and its Impact on Employer Attractiveness. Journal of Computer Information Systems, 56(1), 1–10. https://doi.org/10.1080/08874417.2015.11645795

Weinert, C., Maier, C., Laumer, S., & Weitzel, T. (2020). Technostress Mitigation: An Experimental Study of Social Support During a Computer Freeze. Journal of Business Economics, 90(8), 1199–1249. https://doi.org/10.1007/s11573-020-00986-y

Downloads

Published

2023-10-18

How to Cite

Lanzl, J., Schoch, M., & Gimpel, H. (2023). Issues regarding IT Consumerization: How Mixed IT Portfolios of Private and Business IT Components Cause Unreliability. Australasian Journal of Information Systems, 27. https://doi.org/10.3127/ajis.v27i0.4121

Issue

Section

Research Articles