Data-Driven Organizations: Review, Conceptual Framework, and Empirical Illustration

Authors

  • Hannes Fischer TU Dresden
  • Martin Wiener TU Dresden
  • Susanne Strahringer TU Dresden
  • Julia Kotlarsky University of Auckland
  • Katja Bley TU Dresden

DOI:

https://doi.org/10.3127/ajis.v27i0.4425

Keywords:

Data-driven organization (DDO), DDO understandings, DDO dimensions, Knowing organization, Literature review, Conceptual DDO framework, Empirical Examples

Abstract

With companies and other organizations increasingly striving to become (more) data-driven, there has been growing research interest in the notion of a data-driven organization (DDO). In existing literature, however, different understandings of such an organization emerged. The study at hand sets forth to synthesize the fragmented body of research through a review of existing DDO definitions and implicit understandings of this concept in the information systems and related literatures. Based on the review results and drawing on the established concept of the “knowing organization,” our study identifies five core dimensions of a DDO—namely, data sourcing & sensemaking, data capabilities, data-driven culture, data-driven decision-making, and data-driven value creation—which we integrate into a conceptual DDO framework. Most notably, the proposed framework suggests that—like its predecessor, the knowing organization—a DDO may draw on an outside-in view; however, it may also draw on an inside-out view, or even combine the two views, thereby setting itself apart from the knowing organization. To illustrate our conceptual DDO framework and demonstrate its usefulness, we apply this framework to three empirical examples. Theoretical and practical contributions as well as directions for future research are discussed.

Author Biographies

Hannes Fischer, TU Dresden

Chair of Business Information Systems, esp. Business Engineering

Martin Wiener, TU Dresden

Chair of Business Information Systems, esp. Business Engineering

Susanne Strahringer, TU Dresden

Chair of Business Information Systems, esp. Information Systems in Trade and Industry

Julia Kotlarsky, University of Auckland

Business School, Information Systems and Operations Management

Katja Bley, TU Dresden

Chair of Business Information Systems, esp. Information Systems in Trade and Industry

References

Anderson, C. (2015). Creating a data-driven organization: Practical advice from the trenches. Sebastopol, CA, USA: O’Reilly.

Berndtsson, M., Forsberg, D., Stein, D., & Svahn, T. (2018). Becoming a Data-driven Organization. ECIS 2018 Proceedings, Portsmouth, UK, 43.

https://aisel.aisnet.org/ecis2018_rip/43

Berndtsson, M., Lennerholt, C., Svahn, T., & Larsson, P. (2020). 13 Organizations’ Attempts to Become Data-Driven. International Journal of Business Intelligence Research, 11(1), 1–21. https://doi.org/10.4018/ijbir.2020010101

Bharadwaj, A., El Sawy, O. A., Pavlou, P. A., & Venkatraman, N. (2013). Digital Business Strategy: Toward a Next Generation of Insights. MIS Quarterly, 37(2), 471–482. https://doi.org/10.25300/misq/2013/37:2.3

Boell, S., & Cecez-Kecmanovic, D. (2014). A Hermeneutic Approach for Conducting Literature Reviews and Literature Searches. Communications of the Association for Information Systems, 34(12). https://doi.org/10.17705/1CAIS.03412

Boell, S., & Wang, B. (2019). Www.litbaskets.io, an IT Artifact Supporting Exploratory Literature Searches for Information Systems Research. ACIS 2019 Proceedings, Perth, WA, Australia, 71. https://aisel.aisnet.org/acis2019/71/

Boulding, K. (1956). General Systems Theory. Management Science, 2(3), 197–208. https://doi.org/10.1287/mnsc.2.3.197

Brown, C. V., & Magill, S. L. (1994). Alignment of the IS Functions with the Enterprise: Toward a Model of Antecedents. MIS Quarterly, 18(4), 371. https://doi.org/10.2307/249521

Choo, C. W. (1996). The knowing organization: How organizations use information to construct meaning, create knowledge and make decisions. International Journal of Information Management, 16(5), 329–340. https://doi.org/10/bbw629

Choo, C. W. (2001). The knowing organization as learning organization. Education + Training, 43(4/5), 197–205. https://doi.org/10.1108/eum0000000005482

Constantiou, I. D., & Kallinikos, J. (2015). New Games, New Rules: Big Data and the Changing Context of Strategy. Journal of Information Technology, 30(1), 44–57.

https://doi.org/10.1057/jit.2014.17

Davenport, T. H. (2006). Competing on analytics. Harvard Business Review, 84(1), 98–107.

Davenport, T. H., & Bean, R. (2018, February). Big Companies Are Embracing Analytics, But Most Still Don’t Have a Data-Driven Culture. Harvard Business Review. https://hbr.org/2018/02/big-companies-are-embracing-analytics-but-most-still-dont-have-a-data-driven-culture

Davenport, T. H., Harris, J. G., De Long, D. W., & Jacobson, A. L. (2001). Data to Knowledge to Results: Building an Analytic Capability. California Management Review, 43(2), 117–138. https://doi.org/10.2307/41166078

Fabijan, A., Dmitriev, P., Olsson, H. H., & Bosch, J. (2017). The Evolution of Continuous Experimentation in Software Product Development. International Conference on Software Engineering 2017 Proceedings, Buenos Aires, 770–780. https://doi.org/10.1109/icse.2017.76

Faraj, S., & Leonardi, P. M. (2022). Strategic organization in the digital age: Rethinking the concept of technology. Strategic Organization, Argentina, 20(4), 771–785. https://doi.org/10.1177/14761270221130253

Fischer, H., Wiener, M., & Strahringer, S. (2023). Embarking on the Digital Transformation Journey toward a Data-Driven Organization: Empirical Insights into Transformation Starting Points. ECIS 2023 Proceedings, Kristiansand, Norway, 298. https://aisel.aisnet.org/ecis2023_rp/298/

Gartner. (2021). Embarking on the Digital Transformation Journey toward a Data-Driven Organization: Empirical Insights into Transformation Starting Points. Stamford, Conn, USA: Gartner. https://www.gartner.com/en/newsroom/press-releases/2021-05-05-gartner-finds-72-percent-of-data-and-analytics-leaders-are-leading-or-heavily-involved-in-digital-transformation-initiatives

Gökalp, M. O., Gökalp, E., Kayabay, K., Koçyiğit, A., & Eren, P. E. (2021). The development of the data science capability maturity model: A survey-based research. Online Information Review, 46(3), 547–567. https://doi.org/10.1108/oir-10-2020-0469

Grover, V., Chiang, R. H. L., Liang, T.-P., & Zhang, D. (2018). Creating Strategic Business Value from Big Data Analytics: A Research Framework. Journal of Management Information Systems, 35(2), 388–423. https://doi.org/10.1080/07421222.2018.1451951

Gualo, F., Rodriguez, M., Verdugo, J., Caballero, I., & Piattini, M. (2021). Data quality certification using ISO/IEC 25012: Industrial experiences. Journal of Systems and Software, 176. https://doi.org/10.1016/j.jss.2021.110938

Gulati, R., Lawrence, P. R., & Puranam, P. (2005). Adaptation in vertical relationships: Beyond incentive conflict. Strategic Management Journal, 26(5), 415–440.

https://doi.org/10.1002/smj.458

Hagen, J. A., & Hess, T. (2020). Linking Big Data and Business: Design Parameters of Data-Driven Organizations. AMCIS 2020 Proceedings, 5.

https://aisel.aisnet.org/amcis2020/data_science_analytics_for_decision_support/data_science_analytics_for_decision_support/5

Hall, R. H. (1977). Organizations: Structure and Process. Englewood Cliffs: Prentice Hall.

Halper, F., & Stodder, D. (2017). What It Takes to Be Data-Driven: Technologies and Best Practices for Becoming a Smarter Organization. TDWI. https://tdwi.org/research/2017/12/bi-all-ppm-all-best-practices-report-what-it-takes-to-be-data-driven

Hartmann, P. M., Zaki, M., Feldmann, N., & Neely, A. (2016). Capturing value from big data – a taxonomy of data-driven business models used by start-up firms. International Journal of Operations & Production Management, 36(10), 1382–1406. https://doi.org/10.1108/ijopm-02-2014-0098

Hicks, J. O. (1993). Management Information Systems: A User Perspective. Minneapolis, MN, USA: West Publishing.

Hinton, M. (2006). Introducing Information Management. London, UK: Taylor & Francis. https://doi.org/10.4324/9780080458397

Hou, F. (2018). Becoming a Data-Driven Enterprise. Accenture Labs.

https://www.accenture.com/content/dam/accenture/final/a-com-migration/r3-additional-pages-1/pdf/pdf-83/accenture-becoming-data-driven-enterprise-data-industrialization.pdf

Hupperz, M., Gür, I., Möller, F., & Otto, B. (2021). What is a Data-Driven Organization? AMCIS 2021 Proceedings, 6.

https://aisel.aisnet.org/amcis2021/strategic_is/strategic_is/6/

Johnson, B. L., & Kruse, S. D. (2019). Educational Leadership, Organizational Learning, and the Ideas of Karl Weick: Perspectives on Theory and Practice (1st ed.). Milton Park, UK: Routledge. https://doi.org/10.4324/9781315114095-1

Katz, D., & Kahn, R. L. (1978). The social psychology of organizations. New York: Wiley.

Kearny, C., Gerber, A., & van der Merwe, A. (2016). Data-driven enterprise architecture and the TOGAF ADM phases. International Conference on Systems, Man, and Cybernetics 2016 Proceedings, Budapest, Hungary, 4603–4608. https://doi.org/10.1109/smc.2016.7844957

Kellogg, K. C., Valentine, M. A., & Christin, A. (2020). Algorithms at Work: The New Contested Terrain of Control. Academy of Management Annals, 14(1), 366–410. https://doi.org/10.5465/annals.2018.0174

Kiron, D. (2017). Lessons from Becoming a Data-Driven Organization. MIT Sloan Management Review, 58(2). https://sloanreview.mit.edu/case-study/lessons-from-becoming-a-data-driven-organization/

Körppen, T., Ullrich, A., & Bertheau, C. (2021). Durchblick statt Bauchgefühl – Transformation zur Data-Driven Organization. (Insight instead of gut feeling – transformation to a data-driven organization). Wirtschaftsinformatik & Management, 13(6), 452–459. https://doi.org/10.1365/s35764-021-00370-7

Lawrence, P. R., & Lorsch, J. W. (1967). Differentiation and Integration in Complex Organizations. Administrative Science Quarterly, 12(1). https://doi.org/10.2307/2391211

Lee, I. (2017). Big data: Dimensions, evolution, impacts, and challenges. Business Horizons, 60(3), 293–303. https://doi.org/10.1016/j.bushor.2017.01.004

Malhotra, N. K., Peterson, M., & Kleiser, S. B. (1999). Marketing Research: A State-of-the-Art Review and Directions for the Twenty-First Century. Journal of the Academy of Marketing Science, 27(2), 160–183. https://doi.org/10.1177/0092070399272004

March, J. G., & Simon, H. A. (1993). Organizations. Oxford, UK: Blackwell Business/Blackwell Publisher.

McAfee, A., & Brynjolfsson, E. (2012). Big Data: The Management Revolution. Harvard Business Review. https://hbr.org/2012/10/big-data-the-management-revolution

McKinsey. (2013). Game changers: Five opportunities for US growth and renewal. https://www.mckinsey.com/~/media/mckinsey/featured%20insights/Americas/US%20game%20changers/MGI_Game_changers_US_growth_and_renewal_Full_report

Morakanyane, R., Grace, A., & O’Reilly, P. (2017). Conceptualizing Digital Transformation in Business Organizations: A Systematic Review of Literature. Digital Transformation – From Connecting Things to Transforming Our Lives, 427–443. https://doi.org/10.18690/978-961-286-043-1.30

Olszak, C. M., & Zurada, J. (2019). Big Data-driven Value Creation for Organizations. HICSS 2019 Proceedings, Grand Wailea, HI, USA, 10. https://hdl.handle.net/10125/59457

Paré, G., Trudel, M.-C., Jaana, M., & Kitsiou, S. (2015). Synthesizing information systems knowledge: A typology of literature reviews. Information & Management, 52(2), 183–199. https://doi.org/10.1016/j.im.2014.08.008

Parra, X. (2022). Chronological Evolution of the Information-Driven Decision-Making Process (1950–2020). Journal of the Knowledge Economy, 32. https://doi.org/10.1007/s13132-022-00917-y

Patil, D. (2011). Building Data Science Teams. Sebastopol, CA, USA: O’Reilly Media.

Puranam, P., Alexy, O., & Reitzig, M. (2014). What’s “New” About New Forms of Organizing? Academy of Management Review, 39(2), 162–180. https://doi.org/10.5465/amr.2011.0436

Ragin, C. C. (2008). Redesigning Social Inquiry. Chicago: University of Chicago Press.

Rubin, E., & Rubin, A. (2013). The impact of Business Intelligence systems on stock return volatility. Information & Management, 50(2–3), 67–75.

https://doi.org/10.1016/j.im.2013.01.002

Satar, N. S. B. M. (2021). Data-driven Organization and Covid-19 Pandemic: A systematic review. Journal of Strategic Digital Transformation in Society, 1(1), 18–32.

Schüritz, R. (2017). How to cultivate Analytics Capabilites within an Organization – Design and Types of Analytics Competency Centers. ECIS 2017 Proceedings, Guimarães, Portugal, 26. http://aisel.aisnet.org/ecis2017_rp/26

Schwer, K., & Hitz, C. (2018). Designing Organizational Structure in the Age of Digitization. Journal of Eastern European and Central Asian Research, 5(1).

https://doi.org/10.15549/jeecar.v5i1.213

Simon, H. A. (1976). Administrative Behavior (4th ed.). New York, NY, USA: Free Press (Simon & Schuster).

Sivarajah, U., Kamal, M. M., Irani, Z., & Weerakkody, V. (2017). Critical analysis of Big Data challenges and analytical methods. Journal of Business Research, 70, 263–286. https://doi.org/10.1016/j.jbusres.2016.08.001

Svensson, R. B., Feldt, R., & Torkar, R. (2019). The Unfulfilled Potential of Data-Driven Decision Making in Agile Software Development, in P. Kruchten, S. Fraser, F. Coallier (Eds.), Agile Processes in Software Engineering and Extreme Programming. XP 2019 Proceedings, Montreal, Canada (Vol. 355, pp. 69–85). Springer. https://doi.org/10.1007/978-3-030-19034-7_5

Svensson, R. B., & Taghavianfar, M. (2020). Toward Becoming a Data-Driven Organization: Challenges and Benefits, in F. Dalpiaz, J. Zdravkovic, & P. Loucopoulos (Eds.), Research Challenges in Information Science (Vol. 385, pp. 3–19). Springer International Publishing. https://doi.org/10.1007/978-3-030-50316-1_1

Thusoo, A., & Sarma, J. S. (2017). Creating a Data-Driven Enterprise with DataOps. Insights from Facebook, Uber, LinkedIn, Twitter, and eBay. Sebastopol, CA, USA: O’Reilly.

Tuomi, I. (1999). Data Is More than Knowledge: Implications of the Reversed Knowledge Hierarchy for Knowledge Management and Organizational Memory. Journal of Management Information Systems, 16(3), 103–117.

https://doi.org/10.1080/07421222.1999.11518258

Webster, J., & Watson, R. T. (2002). Analyzing the Past to Prepare for the Future: Writing a literature Review. MIS Quarterly, 26(2), 13–23.

WEF. (2021). Data-driven Economies: Foundations for Our Common Future.

https://www.weforum.org/publications/data-driven-economies-foundations-for-our-common-future/

Weick, K. E. (1969). The Social Psychology of Organizing. New York, NY, USA: McGraw Hill.

Wessel, L., Baiyere, A., Ologeanu-Taddei, R., Cha, J., & Blegind Jensen, T. (2021). Unpacking the Difference Between Digital Transformation and IT-Enabled Organizational Transformation. Journal of the Association for Information Systems, 22(1), 102–129. https://doi.org/10.17705/1jais.00655

West, R., & Turner, L. H. (2014). Introducing Communication Theory: Analysis and Application (6th ed.). New York, NY, USA: McGraw Hill.

Wiener, M., Saunders, C., & Marabelli, M. (2020). Big-data business models: A critical literature review and multiperspective research framework. Journal of Information Technology, 35(1), 66–91.

Wittgenstein, L., & Anscombe, G. E. M. (1989). Philosophical investigations: = Philosophische Untersuchungen (3nd ed., repr). Cambridge, UK: Blackwell.

Yoo, Y., Boland, R. J., Lyytinen, K., & Majchrzak, A. (2012). Organizing for Innovation in the Digitized World. Organization Science, 23(5), 1398–1408.

Downloads

Published

2023-11-27

How to Cite

Fischer, H., Wiener, M., Strahringer, S., Kotlarsky, J., & Bley, K. (2023). Data-Driven Organizations: Review, Conceptual Framework, and Empirical Illustration. Australasian Journal of Information Systems, 27. https://doi.org/10.3127/ajis.v27i0.4425

Issue

Section

Selected Papers from the Australasian Conference on Information Systems (ACIS)