Exploring the Dynamics of Less Frequent Social Media Usage

Authors

  • Anh Ta University of Nebraska Omaha
  • Quynh Nguyen Stockston University
  • Steven Schulz University of Nebraska Omaha
  • Linh Le University of Nebraska Omaha

DOI:

https://doi.org/10.3127/ajis.v29.5549

Keywords:

Less Frequent Use (LFU) Model, IS Discontinuance, Stimulus-Organism-Response Framework, Structural Equation Modeling, Integrated Technology Life Cycle

Abstract

This study addresses a significant gap in Information Systems (IS) research by examining Less Frequent Use (LFU) and discontinuation of IS products, particularly in the context of Social Media (SM) platforms. Previous research has emphasized adoption and continued use, leaving later lifecycle stages underexplored. Building upon the Stimulus-Organism-Response (S-O-R) framework, this study proposes a novel LFU model to explore key determinants, including perceived influencer disengagement, loss of interest, negative news exposure, addiction realization, and distrust, which contribute to reduced SM usage and the intention to discontinue. Empirical testing of the LFU model reveals that influencer disengagement reduces user interest, leading to less frequent usage and potential discontinuation. Additionally, negative news exposure fosters distrust, diminishing user engagement and leading to discontinuation intent. The results of post hoc analyses provide a comprehensive view of the model for different subsamples, considering variables such as gender, usage frequency, and the number of social media platforms used. The findings have both theoretical and practical implications, offering insights into SM user retention strategies. We also introduce the Integrated Technology Life Cycle framework, which clarifies overlooked stages such as intermittent discontinuance and less frequent use, and outlines directions for future research across diverse technological contexts.

References

Adobe Communications (2022). The New-Era of Self Expression: How the next generation are tackling social media, creativity and authenticity. Adobe. Retrieved from https://blog.adobe.com/en/publish/2022/07/05/new-era-of-self-expression-how-the-next-generation-are-tackling-social-media-creativity-and-authenticity

Ajzen, I. (1991). The theory of planned behaviour. Organizational Behaviour and Human Decision Processes, 50(2), 179-211. doi.org/10.1016/0749-5978(91)90020-T

Amin, M., Rezaei, S., & Abolghasemi, M. (2014). User satisfaction with mobile websites: the impact of perceived usefulness (PU), perceived ease of use (PEOU) and trust. Nankai Business Review International, 5(3), 258-274. doi.org/10.1108/NBRI-01-2014-0005

Amrollahi, A. (2021). A conceptual tool to eliminate filter bubbles in social networks. Australasian Journal of Information Systems, 25, 1-16. doi.org/10.3127/ajis.v25i0.2867

Anderson, M. (2018, September 27). A Majority of Teens Have Experienced Some Form of Cyberbullying | Pew Research Center. Pew Research Center. https://www.pewresearch.org/internet/2018/09/27/a-majority-of-teens-have-experienced-some-form-of-cyberbullying/

Aten, J. (2019, August 8). Instagram Allowed an Ad Partner to Track Millions of Users’ Data, and It’s a Major Privacy Problem | Inc.com. Inc. https://www.inc.com/jason-aten/instagram-just-acknowledged-it-has-a-much-bigger-privacy-problem-than-we-thought.html

Audrezet, A., de Kerviler, G., & Moulard, J. G. (2020). Authenticity under threat: When social media influencers need to go beyond self-presentation. Journal of Business Research, 117, 557-569. doi.org/10.1016/j.jbusres.2018.07.008

Bardus, M., Borgi, C., El-Harakeh, M., Gherbal, T., Kharroubi, S., & Fares, E. J. (2021). Exploring the Use of Mobile and Wearable Technology among University Student Athletes in Lebanon: A Cross-Sectional Study. Sensors, 21(13), 4472. doi.org/10.3390/s21134472

Bastrygina, T., & Lim, W. M. (2023). Foundations of consumer engagement with social media influencers. International Journal of Web Based Communities, 19(2-3), 222-242. doi.org/10.1504/IJWBC.2023.131410

Behl, A., & Pereira, V. (2021). What’s behind a scratch card? Designing a mobile application using gamification to study customer loyalty: An experimental approach. Australasian Journal of Information Systems, 25. doi.org/10.3127/ajis.v25i0.3203

Benlian, A. (2015). Web personalization cues and their differential effects on user assessments of website value. Journal of Management Information Systems, 32(1), 225-260. doi.org/10.1080/07421222.2015.1029394

Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88 (3), 588–606. doi.org/10.1037/0033-2909.88.3.588

Bergkvist, L., & Rossiter, J. R. (2007). The predictive validity of multiple-item versus single-item measures of the same constructs. Journal of Marketing Research, 44(2), 175-184. doi.org/10.1509/jmkr.44.2.175

Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS Quarterly, 351-370. doi.org/10.2307/3250921

Bhattacherjee, A., & Lin, C. P. (2015). A unified model of IT continuance: three complementary perspectives and crossover effects. European Journal of Information Systems, 24(4), 364-373. doi.org/10.1057/ejis.2013.36

Black S. (2022). The 46-year-old social media virgin: how people ditch Twitter, Facebook and Instagram and survive. Guardian News & Media Limited. Retrieved from https://www.theguardian.com/media/2022/nov/12/the-46-year-old-social-media-virgin-how-people-ditch-twitter-facebook-and-instagram-and-survive

Brown, A. & Freeman, A. (2022). Top-Earning TikTok-ers 2022: Charli And Dixie D’Amelio And Addison Rae Expand Fame—And Paydays. Forbes. Retrieved from https://www.forbes.com/sites/abrambrown/2022/01/07/top-earning-tiktokers-charli-dixie-damelio-addison-rae-bella-poarch-josh-richards/?sh=4353b30c3afa

Bulow, J. (1986). An economic theory of planned obsolescence. The Quarterly Journal of Economics, 101(4), 729-749. doi.org/10.2307/1884176

Button, G., Mason, D., & Sharrock, W. (2003). Disempowerment and resistance in the print industry? Reactions to surveillance–capable technology. New Technology, Work and Employment, 18(1), 50-61. doi.org/10.1111/1468-005X.00110

Byrne, B. M. (2016). Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming (Multivariate Applications) (3 ed.). Routledge. doi.org/10.4324/9781315757421

Casaló, L. V., Flavián, C., & Ibáñez-Sánchez, S. (2020). Influencers on Instagram: Antecedents and consequences of opinion leadership. Journal of Business Research, 117, 510-519. doi.org/10.1016/j.jbusres.2018.07.005

Celie O’Neil-Hart, Howard Blumenstein, July 2016, Why YouTube stars are more influential than traditional celebrities https://www.thinkwithgoogle.com/marketing-strategies/video/youtube-stars-influence

Cheng, Y., & Chen, Z. F. (2020). Encountering misinformation online: antecedents of trust and distrust and their impact on the intensity of Facebook use. Online Information Review. doi.org/10.1108/OIR-04-2020-0130

Conger, K. (2020, August 3). F.T.C. Investigating Twitter for Potential Privacy Violations - The New York Times. The New York Times. https://www.nytimes.com/2020/08/03/technology/ftc-twitter-privacy-violations.html

Crego, E. T., & Schiffrin, P. D. (1995). Customer-centered reengineering: Remapping for total customer value. Irwin Professional Publishing.

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 319-340. doi.org/10.2307/249008

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003. doi.org/10.1287/mnsc.35.8.982

De Veirman, M., Cauberghe, V., & Hudders, L. (2017). Marketing through Instagram influencers: the impact of number of followers and product divergence on brand attitude. International Journal of Advertising, 36(5), 798-828. doi.org/10.1080/02650487.2017.1348035

Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behaviour. New York, NY: Plenum.

Dean, J. (1950). Pricing policies for new products. Harvard Business Review, 28, 45-50.

Deutsch, M., & Gerard, H. B. (1955). A study of normative and informational social influences upon individual judgment. The Journal of Abnormal and Social Psychology, 51(3), 629. doi.org/10.1037/h0046408

Dhanesh, G. S., & Duthler, G. (2019). Relationship management through social media influencers: Effects of followers’ awareness of paid endorsement. Public Relations Review, 45(3), 101765. doi.org/10.1016/j.pubrev.2019.03.002

Di Gangi, P. M., & Wasko, M. M. (2016). Social media engagement theory: Exploring the influence of user engagement on social media usage. Journal of Organizational and End User Computing, 28(2), 53-73. doi.org/10.4018/JOEUC.2016040104

Dickinger, A., Arami, M., & Meyer, D. (2008). The role of perceived enjoyment and social norm in the adoption of technology with network externalities. European Journal of Information Systems, 17 (1), 4–11. doi.org/10.1057/palgrave.ejis.3000726

Dinh, T. C. T., & Lee, Y. (2022). “I want to be as trendy as influencers”–how “fear of missing out” leads to buying intention for products endorsed by social media influencers. Journal of Research in Interactive Marketing, 16(3), 346-364. doi.org/10.1108/JRIM-04-2021-0127

Drolet, A. L., & Morrison, D. G. (2001). Do we really need multiple-item measures in service research? Journal of Service Research, 3(3), 196-204. doi.org/10.1177/109467050133001

Eccles, J. S., & Wigfield, A. (2002). Motivational beliefs, values, and goals. Annual Review of Psychology, 53, 109–132. https://doi.org/10.1146/annurev.psych.53.100901.135153

Entman, R. M. (1993). Framing: Toward clarification of a fractured paradigm. Journal of Communication, 43(4), 51-58. doi.org/10.1111/j.1460-2466.1993.tb01304.x

Feng, Y., Li, L., & Zhao, A. (2022). A cognitive-emotional model from mobile short-form video addiction to intermittent discontinuance: the moderating role of neutralization. International Journal of Human–Computer Interaction, 1-13. doi.org/10.1080/10447318.2022.2147714

Ferneley, E. H., & Sobreperez, P. (2006). Resist, comply or workaround? An examination of different facets of user engagement with information systems. European Journal of Information Systems, 15(4), 345-356. doi.org/10.1057/palgrave.ejis.3000629

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18, 39–50. doi.org/10.1177/002224378101800

Fukuoka Y, Kamitani E, Bonnet K, Lindgren T, Real-Time Social Support Through a Mobile Virtual Community to Improve Healthy Behaviour in Overweight and Sedentary Adults: A Focus Group Analysis, J Med Internet Res 2011;13(3). doi.org/10.2196/jmir.1770

Furneaux, B., & Wade, M. (2010). The end of the information system life: a model of discontinuance. ACM SIGMIS Database: the DATABASE for Advances in Information Systems, 41(2), 45-69. doi.org/10.2307/23042797

Furneaux, B., & Wade, M. (2011). An exploration of organizational level information systems discontinuance intentions. MIS Quarterly, 573-598.

Furneaux, B., & Wade, M. (2017). Impediments to information systems replacement: a calculus of discontinuance. Journal of Management Information Systems, 34(3), 902-932. doi.org/10.1080/07421222.2017.1373013

Gallo, A. (2014). The Value of Keeping the Right Customers. Havard Business Review. Retrieved from https://hbr.org/2014/10/the-value-of-keeping-the-right-customers?registration=success

Gefen, D., Rigdon, E. E., & Straub, D. (2011). Editor's comments: an update and extension to SEM guidelines for administrative and social science research. MIS quarterly, iii-xiv. doi.org/10.2307/23044042

Gefen, D., Straub, D., & Boudreau, M. C. (2000). Structural equation modeling and regression: Guidelines for research practice. Communications of the Association for Information Systems, 4(1), 7. doi.org/10.17705/1CAIS.00407

Gerhart, N., & Ogbanufe, O. (2022). Exploring smart wearables through the lens of reactance theory: Linking values, social influence, and status quo. Computers in Human Behaviour. doi.org/10.1016/j.chb.2021.107044

Graf-Vlachy, L., Buhtz, K., & König, A. (2018). Social influence in technology adoption: taking stock and moving forward. Management Review Quarterly, 68, 37-76. doi.org/10.1007/s11301-017-0133-3

Hair Jr, J., Hair Jr, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2021). A primer on partial least squares structural equation modeling (PLS-SEM). Sage publications. doi.org/10.1007/978-3-030-80519-7

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2018). Multivariate Data Analysis (8 ed.). Cengage Learning.

Harman, H. H. (1976). Modern factor analysis. University of Chicago Press.

Han, L., Sun, R., Gao, F., Zhou, Y., & Jou, M. (2019). The effect of negative energy news on social trust and helping behaviour. Computers in Human Behaviour, 92, 128–138. doi.org/10.1016/j.chb.2018.11.012

Hawi, N. S., & Samaha, M. (2017). The Relations Among Social Media Addiction, Self-Esteem, and Life Satisfaction in University Students. Social Science Computer Review, 35(5), 576–586. doi.org/10.1177/0894439316660340

Horton, D., & Wohl, R. R. (1956). Mass communication and para-social interaction. Psychiatry, 19, 215–229. doi.org/10.1080/00332747.1956.11023049

Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: a Multidisciplinary Journal, 6(1), 1-55. doi.org/10.1080/10705519909540118

Huang, Z., Palvia, P., & Mehta, N. (2023). Social media discontinuance: the salient roles of dark side and regret. Journal of Information Technology Case and Application Research, 25(1), 28-57. doi.org/10.1080/15228053.2023.2185059

Hudders, L., De Jans, S., & De Veirman, M. (2021). The commercialization of social media stars: a literature review and conceptual framework on the strategic use of social media influencers. International Journal of Advertising, 40(3), 327-375. doi.org/10.1080/02650487.2020.1836925

Hunt, M. G., Marx, R., Lipson, C., & Young, J. (2018). No more FOMO: Limiting social media decreases loneliness and depression. Journal of Social and Clinical Psychology, 37(10), 751-768. doi.org/10.1521/jscp.2018.37.10.751

Islam, A. N., Mäntymäki, M., Laato, S., & Turel, O. (2022). Adverse consequences of emotional support seeking through social network sites in coping with stress from a global pandemic. International Journal of Information Management, 62, 102431. doi.org/10.1016/j.ijinfomgt.2021.102431

Jabeen, F., Tandon, A., Azad, N., Islam, A. N., & Pereira, V. (2023). The dark side of social media platforms: A situation organism behaviour consequence approach. Technological Forecasting and Social Change, 186, 122104. doi.org/10.1016/j.techfore.2022.122104

Karahanna, E., Straub, D. W., & Chervany, N. L. (1999). Information technology adoption across time: Across-sectional comparison of pre-adoption and post-adoption beliefs. MIS Quarterly, 23, 183–213. doi.org/10.2307/249751

Kim, Y., Chen, H. T., & De Zúñiga, H. G. (2013). Stumbling upon news on the Internet: Effects of incidental news exposure and relative entertainment use on political engagement. Computers in Human Behaviour, 29(6), 2607-2614. doi.org/10.1016/j.chb.2013.06.005

Kirk, C. P., Swain, S. D., & Gaskin, J. E. (2015). I’m proud of it: Consumer technology appropriation and psychological ownership. Journal of Marketing Theory and Practice, 23(2), 166-184. doi.org/10.1080/10696679.2015.1002335

Kleinnijenhuis, J., Van Hoof, A. M. J., & Oegema, D. (2006). Negative news and the sleeper effect of distrust. Harvard International Journal of Press/Politics, 11(2), 86–104. doi.org/10.1177/1081180X06286417

Klepper, S. (1997). Industry life cycles. Industrial and Corporate Change, 6(1), 145-182. doi.org/10.1093/icc/6.1.145

Kline, R. B. (2023). Principles and Practice of Structural Equation Modeling (5 ed.). Guilford Press.

Kobayashi, M., Fussell, S. R., Xiao, Y., & Seagull, F. J. (2005, April). Work coordination, workflow, and workarounds in a medical context. CHI'05 extended abstracts on Human Factors in Computing Systems (pp. 1561-1564). doi.org/10.1145/1056808.1056966

Kock, N. (2015). Common method bias in PLS-SEM: A full collinearity assessment approach. International Journal of e-Collaboration (IJEC), 11(4), 1–10. https://dl.acm.org/doi/10.4018/ijec.2015100101

Kock, N., & Lynn, G. (2012). Lateral collinearity and misleading results in variance-based SEM: An illustration and recommendations. Journal of the Association for Information Systems, 13(7), 546–580. https://doi.org/10.17705/1jais.00302

Krebs, P., & Duncan, D. T. (2015). Health app use among US mobile phone owners: a national survey. JMIR mHealth and uHealth, 3(4), e4924. doi.org/10.2196/mhealth.4924

Kross, E., Verduyn, P., Demiralp, E., Park, J., Lee, D. S., Lin, N., ... & Ybarra, O. (2013). Facebook use predicts declines in subjective well-being in young adults. PloS one, 8(8), e69841. doi.org/10.1371/journal.pone.0069841

Leonardi, P. M. (2011). When flexible routines meet flexible technologies: Affordance, constraint, and the imbrication of human and material agencies. MIS Quarterly, 147-167. doi.org/10.2307/23043493

Levitt, T. (1965). Exploit the product life cycle (Vol. 43). Graduate School of Business Administration, Harvard University. Retrieved from https://hbr.org/1965/11/exploit-the-product-life-cycle

Lewicki, R. J., McAllister, D. J., & Bies, R. I. (1998). Trust and distrust: New relationships and realities. Academy of Management Review, 23(3), 438–458. doi.org/10.2307/259288

Li, C. Y. (2019). How social commerce constructs influence customers' social shopping intention? An empirical study of a social commerce website. Technological Forecasting and Social Change, 144, 282-294. doi.org/10.1016/j.techfore.2017.11.026

Li, X., Liu, Z., Chen, Y., & Ren, A. (2023). Consumer avoidance toward message stream advertising on mobile social media: a stimulus-organism-response perspective. Information Technology & People. /doi.org/10.1108/ITP-11-2020-0761

Lohmoller, J. B. (1989). Latent variable path modeling with partial least squares. Physica: Heidelberg. doi.org/10.1007/978-3-642-52512-4

Mai, F., Shan, Z., Bai, Q., Wang, X., & Chiang, R. H. (2018). How does social media impact Bitcoin value? A test of the silent majority hypothesis. Journal of Management Information Systems, 35(1), 19-52. doi.org/10.1080/07421222.2018.1440774

Maier, C., Laumer, S., Weinert, C., & Weitzel, T. (2015). The effects of technostress and switching stress on discontinued use of social networking services: a study of Facebook use. Information Systems Journal, 25(3), 275-308. doi.org/10.1111/isj.12068

Marakas, G. M., & Hornik, S. (1996). Passive resistance misuse: overt support and covert recalcitrance in IS implementation. European Journal of Information Systems, 5, 208-219. doi.org/10.1057/ejis.1996.26

Masuda, H., Han, S. H., & Lee, J. (2022). Impacts of influencer attributes on purchase intentions in social media influencer marketing: Mediating roles of characterizations. Technological Forecasting and Social Change, 174, 121246. doi.org/10.1016/j.techfore.2021.121246

McCombs, M. E., & Shaw, D. L. (1972). The agenda-setting function of mass media. Public Opinion quarterly, 36(2), 176-187. /doi.org/10.1086/267990

McKnight, D. H., & Chervany, N. L. (2001). Trust and Distrust Definitions: One Bite at a Time. Trust in Cyber-Societies. doi.org/10.1007/3-540-45547-7_3

McKnight, D. H., Lankton, N. K., Nicolaou, A., & Price, J. (2017). Distinguishing the effects of B2B information quality, system quality, and service outcome quality on trust and distrust. The Journal of Strategic Information Systems, 26(2), 118-141. doi.org/10.1016/j.jsis.2017.01.001

Mehrabian, A., & Russell, J. A. (1974). An approach to environmental psychology. the MIT Press.

Mehrizi, M. H. R., Modol, J. R., & Nezhad, M. Z. (2019). Intensifying to cease: Unpacking the process of information systems discontinuance. MIS Quarterly, 43(1), 141-165. doi.org/10.25300/MISQ/2019/13717

Ming, L. C. & Chan, R. (2022). ‘The algorithm does it for you’: Why social media users are ditching ‘boring’ Facebook and Instagram for shiny new toys. CNA. Retrieved from https://www.channelnewsasia.com/business/elon-musk-too-much-work-my-plate-twitter-tesla-bali-g20-3069676

Moqbel, M., & Kock, N. (2018). Unveiling the dark side of social networking sites: Personal and work-related consequences of social networking site addiction. Information & Management, 55(1), 109-119. doi.org/10.1016/j.im.2017.05.001

Morning Consult (2019). The influencer report https://blog.hostalia.com/wp-content/uploads/2019/11/2019-influencer-report-engaging-gen-z-millennials-morning-consult-informe-blog-hostalia-hosting.pdf

Morton, F. M. S. (2021, June 8). Social Media Is Addictive. Do Regulators Need to Step In? | Yale Insights. Yale Insights. https://insights.som.yale.edu/insights/social-media-is-addictive-do-regulators-need-to-step-in

Msaed, C., Al-Kwifi, S. O., & Ahmed, Z. U. (2017). Building a comprehensive model to investigate factors behind switching intention of high-technology products. Journal of Product & Brand Management, 26(2), 102-119. doi.org/10.1108/JPBM-06-2015-0915

Mudambi, S., Schuff, D., & Zifla, E. (2016). What’s “funny” about technology adoption? Humorous appropriation of online review platforms. Thirty Seventh International Conference on Information Systems, Dublin 2016.

Murez, C. (2021, April 1). Boys Who Spend Lots of Time Online More Likely to Cyberbully | Health News | US News. US News. https://www.usnews.com/news/health-news/articles/2021-04-01/boys-who-spend-lots-of-time-online-more-likely-to-cyberbully

Ng, Y. M. M. (2020). Re-examining the innovation post-adoption process: The case of Twitter discontinuance. Computers in Human Behaviour, 103, 48-56. doi.org/10.1016/j.chb.2019.09.019

Nguyen, Q. N., Ta, A., & Prybutok, V. (2019). An integrated model of voice-user interface continuance intention: the gender effect. International Journal of Human–Computer Interaction, 35(15), 1362-1377. doi.org/10.1080/10447318.2018.1525023

Nuñez, M. (2019, July 24). FTC Slaps Facebook with $5 Billion Fine, Forces New Privacy Controls. Forbes. https://www.forbes.com/sites/mnunez/2019/07/24/ftcs-unprecedented-slap-fines-facebook-5-billion-forces-new-privacy-controls/?sh=5a93b0d55668

Nunnally, J. C. (1978). Psychometric theory. New York, NYC: McGraw-Hill.

O'Brien, H. L., & Toms, E. G. (2008). What is user engagement? A conceptual framework for defining user engagement with technology. Journal of the American Society for Information Science and Technology, 59(6), 938-955. doi.org/10.1002/asi.20801

Ooi, K. B., Lee, V. H., Hew, J. J., Leong, L. Y., Tan, G. W. H., & Lim, A. F. (2023). Social media influencers: an effective marketing approach? Journal of Business Research, 160, 113773. doi.org/10.1016/j.jbusres.2023.113773

Orlikowski, W. J. (1992). The duality of technology: Rethinking the concept of technology in organizations. Organization Science, 3(3), 398-427. doi.org/10.1287/orsc.3.3.398

Osatuyi, B., & Turel, O. (2020). Conceptualisation and validation of system use reduction as a self-regulatory IS use behaviour. European Journal of Information Systems, 29(1), 44-64. doi.org/10.1080/0960085X.2019.1709575

Paswan, A. K., Gai, L., & Jeon, S. (2015). Alcohol and college students: Reasons, realization and intention to quit. Journal of Business Research, 68(10), 2075-2083. doi.org/10.1016/j.jbusres.2015.03.005

Perez-Vega, R., Kaartemo, V., Lages, C. R., Razavi, N. B., & Männistö, J. (2021). Reshaping the contexts of online customer engagement behaviour via artificial intelligence: A conceptual framework. Journal of Business Research, 129, 902-910. doi.org/10.1016/j.jbusres.2020.11.002

Petrides, L. A., McClelland, S. I., & Nodine, T. R. (2004). Costs and benefits of the workaround: inventive solution or costly alternative. International Journal of Educational Management, 18(2), 100-108. doi.org/10.1108/09513540410522234

Pew Research, (2021). Social Media Use in 2021. Retrieved from https://www.pewresearch.org/internet/2021/04/07/social-media-use-in-2021/

Polites, G. L., & Karahanna, E. (2012). Shackled to the status quo: The inhibiting effects of incumbent system habit, switching costs, and inertia on new system acceptance. MIS Quarterly, 21-42. doi.org/10.2307/41410404

Priyadarshini, C., Kumar Dubey, R., N Kumar, Y. L., & Ranjan Jha, R. (2020). Impact of a Social Media Addiction on Employees’ Wellbeing and Work Productivity. The Qualitative Report, 25, 181–196. doi.org/10.46743/2160-3715/2020.4099

Recker, J. (2016). Reasoning about discontinuance of information system use. Journal of Information Technology Theory and Application (JITTA), 17(1),

Reichheld, F. (2001). Prescription for cutting costs. Harvard Business School Publishing.

Rezvani, A., Khosravi, P., & Dong, L. (2017). Motivating users toward continued usage of information systems: Self-determination theory perspective. Computers in Human Behaviour, 76, 263-275. doi.org/10.1016/j.chb.2017.07.032

Rivard, S., & Lapointe, L. (2012). Information technology implementers’ responses to user resistance: Nature and effects. MIS Quarterly, 897-920. doi.org/10.2307/41703485

Rogers, E. M. (1995). Diffusion of Innovations, 4th Edition, The Free Press, New York.

Rotter, J. B. (1980). Interpersonal trust, trustworthiness, and gullibility. American Psychologist, 35(1), 1–7. doi.org/10.1037/0003-066X.35.1.1

Schou Andreassen, C., & Pallesen, S. (2014). Social Network Site Addiction - An Overview. Current Pharmaceutical Design, 20. doi.org/10.2174/13816128113199990616

Schumacker, R. E., & Lomax, R. G. (2010). A Beginner's Guide to Structural Equation Modeling (3 ed.). Routledge.

Shen, X. L., Li, Y. J., & Sun, Y. (2018). Wearable health information systems intermittent discontinuance: A revised expectation-disconfirmation model. Industrial Management & Data Systems, 118(3), 506-523. doi.org/10.1108/IMDS-05-2017-0222

Smith, L. A., & Foxcroft, D. R. (2009). The effect of alcohol advertising, marketing and portrayal on drinking behaviour in young people: systematic review of prospective cohort studies. BMC Public Health, 9, 1-11. doi.org/10.1186/1471-2458-9-51

Soh, F., Smith, K., & Dhillon, G. (2022). The relationship between social capital and social media addiction: The role of privacy self-efficacy. Australasian Journal of Information Systems, 26. doi.org/10.3127/ajis.v26i0.3367

Soliman, W., & Rinta-Kahila, T. (2020). Toward a refined conceptualization of IS discontinuance: Reflection on the past and a way forward. Information & Management, 57(2), 103167. doi.org/10.1016/j.im.2019.05.002

Sood, A., & Tellis, G. J. (2005). Technological evolution and radical innovation. Journal of Marketing, 69(3), 152-168. doi.org/10.1509/jmkg.69.3.152.66361

Starcevic, V. (2013). Is Internet addiction a useful concept? In Australian and New Zealand Journal of Psychiatry (Vol. 47, Issue 1, pp. 16–19). SAGE Publications. Sage UK: London, England. doi.org/10.1177/0004867412461693

Statista (2021a). Leading social media usage reasons worldwide 2021. Retrieved from https://www.statista.com/statistics/715449/social-media-usage-reasons-worldwide

Statista (2021b). U.S. social media addiction by age group 2019. Statista.Com. https://www.statista.com/statistics/1081292/social-media-addiction-by-age-usa/

Statista (2023). Share of internet users of the leading social media in China as of the 3rd quarter of 2022. Retrieved from https://www.statista.com/statistics/250546/leading-social-network-sites-in-china/#statisticContainer

Ta, A., & Prybutok, V. (2018). A mindful product acceptance model. Journal of Decision Systems, 27(1), 19-36. doi.org/10.1080/12460125.2018.1479149

Tam, C., Santos, D., & Oliveira, T. (2020). Exploring the influential factors of continuance intention to use mobile Apps: Extending the expectation confirmation model. Information Systems Frontiers, 22, 243-257. doi.org/10.1007/s10796-018-9864-5

Tang, J., Hu, X., & Liu, H. (2014). Is distrust the negation of trust?: The value of distrust in social media. HT 2014 - Proceedings of the 25th ACM Conference on Hypertext and Social Media, 148–157. doi.org/10.1145/2631775.2631793

Taylor, M., & Taylor, A. (2012). The technology life cycle: Conceptualization and managerial implications. International Journal of Production Economics, 140(1), 541-553. doi.org/10.1016/j.ijpe.2012.07.006

Tellis, G. J., & Crawford, C. M. (1981). An Evolutionary Approach to Product Growth Theory. Journal of Marketing, 45(4), 125–132. doi.org/10.2307/1251480

Thielsch, M. T., Meeßen, S. M., & Hertel, G. (2018). Trust and distrust in information systems at the workplace. PeerJ, 6, e5483. doi.org/10.7717/peerj.5483

Turel, O. (2015). Quitting the use of a habituated hedonic information system: a theoretical model and empirical examination of Facebook users. European Journal of Information Systems, 24(4), 431-446. doi.org/10.1057/ejis.2014.19

Vaghefi, I., & Tulu, B. (2019). The continued use of mobile health apps: insights from a longitudinal study. JMIR mHealth and uHealth, 7(8), e12983. doi.org/10.2196/12983

Vaghefi, I., Lapointe, L., & Boudreau‐Pinsonneault, C. (2017). A typology of user liability to IT addiction. Information Systems Journal, 27(2), 125-169. doi.org/10.1111/isj.12098

Vaghefi, I., Qahri-Saremi, H., & Turel, O. (2020). Dealing with social networking site addiction: a cognitive-affective model of discontinuance decisions. Internet Research. doi.org/10.1108/INTR-10-2019-0418

Van der Heijden, H. (2004). User acceptance of hedonic information systems. MIS Quarterly, 695-704. doi.org/10.2307/25148660

Venkatesh, V., & Agarwal, R. (2006). Turning visitors into customers: A usability-centric perspective on purchase behaviour in electronic channels. Management Science, 52(3), 367-382. doi.org/10.1287/mnsc.1050.0442

Venkatesh, V., & Brown, S. A. (2001). A longitudinal investigation of personal computers in homes: Adoption determinants and emerging challenges. MIS quarterly, 71-102. doi.org/10.2307/3250959

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 425-478. doi.org/10.2307/30036540

Vernon, R. (1966). International Investment and International Trade in the Product Cycle. The Quarterly Journal of Economics, 80(2), 190-207. doi.org/10.2307/1880689

Walker, M. and Matsa, K. E. (2021). News Consumption Across social media in 2021. Pew Research Center. Retrieved from https://www.pewresearch.org/journalism/2021/09/20/news consumption-across-social-media-in-2021/

Wanous, J. P., Reichers, A. E., & Hudy, M. J. (1997). Overall job satisfaction: how good are single-item measures? Journal of Applied Psychology, 82(2), 247. doi.org/10.1037/0021-9010.82.2.247

Worthington, R. L., & Whittaker, T. A. (2006). Scale development research: A content analysis and recommendations for best practices. The Counseling Psychologist, 34(6), 806-838. doi.org/10.1177/0011000006288127

Xiao, X., Sarker, S., Wright, R. T., Sarker, S., & Mariadoss, B. J. (2020). Commitment and Replacement of Existing SaaS-Delivered Applications: A Mixed-Methods Investigation. MIS Quarterly, 44(4). doi.org/10.25300/MISQ/2020/13216

Xu, Y. C., Yang, Y., Cheng, Z., & Lim, J. (2014). Retaining and attracting users in social networking services: An empirical investigation of cyber migration. The Journal of Strategic Information Systems, 23(3), 239-253. doi.org/10.1016/j.jsis.2014.03.002

Ye, D., Cho, D., Chen, J., & Jia, Z. (2023). Empirical investigation of the impact of overload on the discontinuous usage intentions of short video users: a stressor-strain-outcome perspective. Online Information Review, 47(4), 697-713. doi.org/10.1108/OIR-09-2021-0481

Yong, A. G., & Pearce, S. (2013). A beginner’s guide to factor analysis: Focusing on exploratory factor analysis. Tutorials in Quantitative Methods for Psychology, 9(2), 79-94. doi.org/10.20982/tqmp.09.2.p079

York, C., & Turcotte, J. (2015). Vacationing from Facebook: Adoption, temporary discontinuance, and readoption of an innovation. Communication Research Reports, 32(1), 54-62.

Zhao, X., Tian, J., & Xue, L. (2020). Herding and software adoption: A re-examination based on post-adoption software discontinuance. Journal of Management Information Systems, 37(2), 484-509. doi.org/10.1080/08824096.2014.989975

Zhou, Z., Yang, M., & Jin, X. L. (2018). Differences in the reasons of intermittent versus permanent discontinuance in social media: an exploratory study in Weibo. Conference Paper at the Hawaii International Conference on System Sciences. doi.org/10.1080/07421222.2020.1759941

Downloads

Published

2025-12-27

How to Cite

Ta, A., Nguyen , Q., Schulz, S., & Le, L. (2025). Exploring the Dynamics of Less Frequent Social Media Usage. Australasian Journal of Information Systems, 29. https://doi.org/10.3127/ajis.v29.5549

Issue

Section

Research Articles